A remark on the definability of the Fitting subgroup and the soluble radical

نویسنده

  • Abderezak Ould Houcine
چکیده

Let G be an arbitrary group. We show that if the Fitting subgroup of G is nilpotent then it is definable. We show also that the class of groups whose Fitting subgroup is nilpotent of class at most n is elementary. We give an example of a group (arbitrary saturated) whose Fitting subgroup is definable but not nilpotent. Similar results for the soluble radical are given.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The influence of S-embedded subgroups on the structure of finite groups

Let H be a subgroup of a group G. H is said to be S-embedded in G if G has a normal T such that HT is an S-permutable subgroup of G and H ∩ T ≤ H sG, where H denotes the subgroup generated by all those subgroups of H which are S-permutable in G. In this paper, we investigate the influence of minimal S-embedded subgroups on the structure of finite groups. We determine the structure the finite grou...

متن کامل

On the Radicals of a Group that does not have the Independence Property

We give an example of a pure group that does not have the independence property, whose Fitting subgroup is neither nilpotent nor definable andwhose soluble radical is neither soluble nor definable. This answers a question asked by E. Jaligot in May 2013. The Fitting subgroupof a stable group is nilpotent and definable (F.Wagner [11]). More generally, the Fitting subgroup of a group that satisfi...

متن کامل

On the Shemetkov Problem for Fitting Classes ∗

Suppose that π be a set of primes and F a local Fitting class. Let Kπ(F) be the set of finite π-soluble groups with a Hall πsubgroup belonging to F. In this paper, we show that the class Kπ(F) is a local Fitting class. Thus, an interesting Shemetkov question for Fitting classes will be answered positively. By using the result, the F-radical of a Hall π-subgroup of a finite π-soluble group is de...

متن کامل

On $Phi$-$tau$-quasinormal subgroups of finite groups

‎Let $tau$ be a subgroup functor and $H$ a $p$-subgroup of a finite group $G$‎. ‎Let $bar{G}=G/H_{G}$ and $bar{H}=H/H_{G}$‎. ‎We say that $H$ is $Phi$-$tau$-quasinormal in $G$ if for some $S$-quasinormal subgroup $bar{T}$ of $bar{G}$ and some $tau$-subgroup $bar{S}$ of $bar{G}$ contained in $bar{H}$‎, ‎$bar{H}bar{T}$ is $S$-quasinormal in $bar{G}$ and $bar{H}capbar{T}leq bar{S}Phi(bar{H})$‎. ‎I...

متن کامل

Groups in which every subgroup has finite index in its Frattini closure

‎In 1970‎, ‎Menegazzo [Gruppi nei quali ogni sottogruppo e intersezione di sottogruppi massimali‎, ‎ Atti Accad‎. ‎Naz‎. ‎Lincei Rend‎. ‎Cl‎. ‎Sci‎. ‎Fis‎. ‎Mat‎. ‎Natur. 48 (1970)‎, ‎559--562.] gave a complete description of the structure of soluble $IM$-groups‎, ‎i.e.‎, ‎groups in which every subgroup can be obtained as intersection of maximal subgroups‎. ‎A group $G$ is said to have the $FM$...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Log. Q.

دوره 59  شماره 

صفحات  -

تاریخ انتشار 2013